مدلسازی لوله های انتقال گاز با شبکه های عصبی مصنوعی به منظور تشخیص عیوب آنها

نویسندگان

علی جودکی

مرتضی محمدظاهری

احسان جمشیدی

چکیده

این مقاله معرفی  رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از شبکه عصبی مصنوعی به کمک امواج مکانیکی است که این روش بسیار ارزان تر و آسان تر از روش اولتراسوند است. که در حال حاضر مشغول به کارمی باشد. این خطوط معمولا در شرایط محیطی سخت و دور از دسترس و در مسافت های طولانی قرار دارند و استفاده از سیستم های که بصورت آنی و دقیق بتوانند عیب ها و نشتی های این لوله را گزارش دهند حیاتی  می باشد.روش ارائه شده شامل مدل سازی یک قطعه لوله 2 اینچی به طول 50 متر در نرم افزار آباکوس6.121است. سپس در نرم افزار اجزاء محدود مدل اجزاء محدود بدست آورده شده است. سپس برای تایید و اعتبار سنجی به مدل اجزاء محدود، قطعه تحت تست مودال قرار گرفته و بعد از تایید مدل شبیه سازی عیب ها که شامل ایجاد 15 سوراخ به شعاع یک میلی متر در فاصله های سه متری است بر روی مدل اجزاء محدود انجام شده است.سپس با گرفتن ارتعاشات(شتاب) لوله در حالت سالم و حالت با عیب و انتقال داده ها شتاب به حوزه فرکانس انجام می شود سپس با استفاده از امضای مکانیکی عیوب ،اختلاف شتاب بین دو مدل سالم و معیوب محاسبه می شود.در مرحله بعد با استفاده از تکنیک های آماری داده های بدست آمده را بصورت مطلوب کاهش می دهیم وسپس شبکه عصبی مصنوعی پایه شعاعی (rbfn) و  شبکه عصبی مصنوعی پرسپترون چند لایه (mlp) برای تخمین مکانی عیب آموزش داده می شود. نتایج بدست آمده قابلیت شبکه های عصبی طراحی شده در تخمین موقیعت عیب را به خوبی نشان می دهد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص آسیب در خطوط انتقال گاز بر اساس تغییرات فرکانس طبیعی به کمک شبکه های عصبی مصنوعی

هدف از این مقاله معرفی یک رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از امواج مکانیکی است. در این مقاله تلاش شده است با استفاده از خصوصیات فرکانس طبیعی و تغییر آن، روشی جهت پیدا کردن عیوب ارائه گردد. با توجه به ارتباط جرم و سفتی در تعیین فرکانس طبیعی، به جای ایجاد عیب (کاهش سفتی) از افزایش جرم استفاده شده است. روش ارائه شده شامل مدل سازی  لوله 2 اینچی به طول2 متر در نرم افزار آبا...

متن کامل

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

متن کامل

مدلسازی و شبیه‌سازی بیوسنسور آنزیمی برای تشخیص آفلاتوکسین B1 با استفاده از شبکه عصبی مصنوعی

افلاتوکسین B1 (AFB1) سمی ترین گروه آفلاتوکسین‌هاست که باعث آلودگی محصولات کشاورزی شده و اثرات مرگ باری بر سلامت انسان دارد. تشخیص AFB1 در مواد غذایی و خوراکی توسط بیوسنسورها سریع، کم هزینه و دقیق است. در این مقاله به مدلسازی و شبیه‌سازی ‌واکنش‌های شیمیایی در بیوسنسور پتانسیومتری AFB1 جهت تعیین ثابت‌های  بهینه نرخ واکنش پرداخته شده است. شبیه‌سازی ‌واکنش‌های شیمیایی توسط نرم افزار COMSOL...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی مکانیک و ارتعاشات

ناشر: دانشگاه آزاد اسلامی واحد سمنان

ISSN 2423-5458

دوره 2

شماره 3 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023